Advertisement

History of computing hardware (1960s-present)

From Academic Kids

History of computing
Before 1960
1960s to present
Operating systems
Timeline

The history of computing hardware (continued from history of computing hardware) picks up with the development of the integrated circuit.

Contents

Third generation

The explosion in the use of computers began with 'Third Generation' computers. These relied on Jack St. Claire Kilby's invention of the integrated circuit (or microchip).

Missing image
Minuteman_I_Computer_D-17.jpg
Autonetics D-17 guidance computer from a Minuteman I missile.

The first integrated circuit was produced in September 1958 but computers using them didn't begin to appear until 1963. Some of their early uses were in embedded systems, notably used by NASA for the Apollo Guidance Computer and by the military in the LGM-30 Minuteman intercontinental ballistic missile.

While large 'mainframes' such as the IBM System/360 increased storage and processing capabilities further, the integrated circuit allowed the development of much smaller computers that began to bring computing into many smaller businesses. They were eventually called minicomputers.

The minicomputer was a significant innovation in the 1960s and 1970s. It brought computing power to more people, not only through more convenient physical size but also through broadening the computer vendor field. Digital Equipment Corporation became the number two computer company behind IBM with their popular PDP and VAX computer systems. Smaller, affordable hardware also brought about the development of important new operating systems like Unix.

Large scale integration of circuits led to the development of very small processing units, an early example of this is the processor used for analysing flight data in the US Navy's F14A Tomcat fighter jet. This processor was developed by Steve Geller, Ray Holt and a team from AiResearch and American Microsystems.

In 1966 Hewlett-Packard entered the general purpose computer business with its HP-2115, offering a computational power formerly found only in much larger computers. It supported a wide variety of languages, among them BASIC, ALGOL, and FORTRAN.

In 1969 Data General shipped a total of 50,000 Novas at $8000 each. The Nova was one of the first 16-bit minicomputers and led the way toward word lengths that were multiples of the 8-bit byte. It was first to employ medium-scale integration (MSI) circuits from Fairchild Semiconductor, with subsequent models using large-scale integrated (LSI) circuits. Also notable was that the entire central processor was contained on one 15-inch printed circuit board.

In 1973 the TV Typewriter, designed by Don Lancaster, provided the first display of alphanumeric information on an ordinary television set. It used $120 worth of electronics components, as outlined in the September 1973 issue of Radio Electronics magazine. The original design included two memory boards and could generate and store 512 characters as 16 lines of 32 characters. A 90-minute cassette tape provided supplementary storage for about 100 pages of text. His design used minimalistic hardware to generate the timing of the various signals needed to create the TV signal. Clive Sinclair later used the same approach in his legendary Sinclair ZX80.

Fourth generation

The basis of the fourth generation was Marcian Hoff's invention of the microprocessor.

Unlike Third generation minicomputers, which were essentially scaled down versions of mainframe computers, the fourth generation's origins are fundamentally different. Microprocessor based computers were originally very limited in their computational ability and speed, and were in no way an attempt to downsize the minicomputer. They were addressing an entirely different market.

Although processing power and storage capacities have increased beyond all recognition since the 1970s the underlying technology of LSI (large scale integration) or VLSI (very large scale integration) microchips has remained basically the same, so it is widely regarded that most of today's computers still belong to the fourth generation.

Microprocessors

On November 15th 1971 Intel released the world's first commercial microprocessor, the 4004. It was developed for a Japanese calculator company, Busicom, as an alternative to hardwired circuitry, reaching the market in 1971. Fourth generation computers developed, using a microprocessor to locate much of the computer's processing abilities on a single (small) chip. Coupled with one of Intel's other products - the RAM chip, based on an invention by Bob Dennard of IBM, (kilobits of memory on a single chip) - the microprocessor allowed fourth generation computers to be even smaller and faster than ever before. The 4004 was only capable of 60,000 instructions per second, but later processors (such as the Intel 8086 upon which all of the IBM PC and compatibles are based) brought ever increasing speed and power to the computers.

Supercomputers

At the other end of the computing spectrum from the microcomputers, supercomputers of the era also harnessed integrated circuit technology and were immensely powerful. In 1976 the Cray-1 was developed by Seymour Cray, who left Control Data in 1972 to form his own company. This machine was known as much for its horseshoe-shaped design -- an effort to speed processing by shortening circuit paths -- as it was for being the first supercomputer to make vector processing practical. Vector processing, which uses a single instruction to perform the same operation on many numbers, has been a fundamental supercomputer processing style ever since. The Cray-1 could calculate 150 million floating point operations per second. 85 were shipped at a cost of $5 million each. The Cray-1 had a CPU that was mostly constructed of ECL SSI/MSI circuits.

The early home computer era

Missing image
Altair_8800.jpg
Altair 8800

You can't talk about computer history without mentioning the early home computers, in particular the MITS Altair. The Altair was featured on the cover of Popular Electronics for January, 1975. It was the world's first mass-produced personal computer kit, as well as the first computer to use an Intel 8080 processor. It was a huge success, and 10,000 Altairs were shipped. The Altair also inspired the software development efforts of Bill Gates and Paul Allen, who developed a full-featured BASIC interpreter for the machine.

The Intel 8080 microprocessor chip (and its compatible follow-ons, the Zilog Z80 and Intel 8085) led to the first wave of small business computers in the late 1970s. Many of them used the S-100 bus (first introduced in the Altair) and most ran the CP/M-80 operating system from Digital Research, founded by Gary Kildall. CP/M-80 was the first popular microcomputer operating system to be used by many different hardware vendors, and many ground-breaking software packages were written for it, such as WordStar and dBase II. The commands in CP/M-80 were patterned after operating systems from Digital Equipment Corporation, such as RSTS and RT-11, and in turn CP/M was copied – down to the file and memory structures – in Microsoft's MS-DOS.

Many hobbyists at the time tried to design their own systems, with various degrees of success, and sometimes banded together to ease the job. Out of these house meetings the Homebrew Computer Club developed, where hobbyists met to talk about what they had done, exchange schematics and software and show off their systems.

At the same time, those same hobbyists were also interested in something ready-built that the average person could afford. Steve Wozniak, a regular visitor to Homebrew Computer Club meetings, designed the Apple I, a single-board computer. With specifications in hand and an order for 100 machines at $500 each from the Byte Shop, he and Steve Jobs got their start in business. In a photograph of the Apple I board, the upper two rows are a video terminal and the lower two rows are the computer. The MOS Technology 6502 microprocessor in the white package sits on the lower right. About 200 of the machines sold before the company announced the Apple II as a complete computer. The Apple II was one of three personal computers launched in 1977. Despite its higher price, it quickly pulled away from the other two, the TRS-80 and Commodore PET, to lead the pack in the late 70s and to become the symbol of the personal computing phenomenon.

Unlike the TRS-80, the Apple II was of high quality and featured a number of technical advantages. It had an open architecture, used color graphics, and most importantly, had an elegantly designed interface to a floppy disk drive, something only mainframes and minis had used for storage until then.

Another key to success was the software: the Apple II was chosen by entrepreneurs Daniel Bricklin and Bob Frankston to be the desktop platform for the first "killer app" of the business world — the VisiCalc spreadsheet program. That created a phenomenal business market for the Apple II; and the corporate presence attracted many software and hardware developers to the machine.

The rise of Apple Computer is one of America's great success stories. Based on the business and technical savvy of Steve Jobs and Steve Wozniak, and the marketing expertise of Mike Markkula, Apple dominated the personal computer industry between 1977 and 1983.

More than 2 million Apple II's were shipped at a price of $970 for the 4KB model.

The Commodore PET (Personal Electronic Transactor) – the first of several personal computers released in 1977 – came fully assembled and was straightforward to operate, with either 4 or 8 kilobytes of memory, a built-in cassette drive, and a calculator "chiclet keyboard". It was followed by the VIC-20, which had a full typewriter keyboard, color and sound, 3.5K of user accessible memory, and a much lower price than Apple's offerings.

Missing image
Commodore64.jpg
Commodore 64 (1982)

The best-selling personal computer of all time was released by Commodore International in 1982: the Commodore 64 (C64). Magazines became available which contained the code for various utilities and games. All of these machines used the MOS Technology 6502 microprocessor CPU; MOS Technology, Inc. was owned by Commodore. The C64 and Commodore's other 8-bit computers was followed in 1985 by the more powerful Commodore Amiga, built around the Motorola 68000 CPU.

Missing image
Amstrad_CPC464.jpg
Amstrad CPC464 (1984)

Many other home computers came onto the market, including the Atari 8-bit family, the Sinclair ZX Spectrum, the TI 99/4A, the BBC Micro, the Amstrad/Schneider CPC 464/CPC 646/CPC 6128 family, the Oric Atmos, the Coleco Adam, the SWTPC 6800 and 6809 machines, the Tandy Color Computer/Dragon 32/64, the Exidy Sorcerer, and the Japanese MSX range.

Other manufacturers worked on the pocket computer.

The IBM PC and its successors

In 1981 IBM decided to enter the personal computer market after seeing the success of the Apple II. The first model was the IBM PC. Like the Apple II and S-100 systems, it was based on an open, card-based architecture which allowed third parties to develop for it. It used the Intel 8088 CPU running at 4.77 MHz, containing 29000 transistors. The first model used an audio cassette for external storage, though there was an expensive floppy disk option. While the original PC design could accommodate only up to 64k on the main board, the architecture was able to accommodate up to 640KB of RAM, with the rest on cards. Later revisions of the design increased the limit to 256K on the main board.

The original PC designed was followed up in 1983 by the IBM XT, which was an incrementally improved design; it ommitted support for the cassette, had more card slots, was available with an optional hard drive. While the architectural memory limit of 640K was the same, later versions fo theit was more readily expandable

Although the PC and XT included a version of the BASIC language in read-only memory, most were purchased with disk drives and run with an operating system; three operating systems were initially announced with the PC. One was CP/M-86 from Digital Research, the second was PC-DOS from IBM, and the third was the UCSD p-System (from the University of California at San Diego). PC-DOS was the IBM branded version of an operating system from Microsoft, previously best known for supplying BASIC language systems to computer hardware companies. When sold by Microsoft, PC-DOS was called MS-DOS. The UCSD p-System OS was built around the Pascal programming language and was not marketed to the same niche as IBM's customers. Neither the p-System nor CPM-86 was a commercial success.

Because MS-DOS was available as a separate product, some companies attempted to make computers available which could run MS-DOS and programs. These early machines, including the Seequa Chameleon and a few others were not especially successful, as they required a customized version of MS-DOS, and could not run programs designed specifically for IBM's hardware.

Because the IBM PC was based on relatively standard integrated circuits, and the basic card-slot design was not patented, the key portion of that hardware was actually the BIOS software embedded in read-only memory. The first truly IBM PC compatible machines came from Compaq, although others soon followed.

In 1984, IBM introduced the IBM Personal Computer/AT (more often called the PC/AT or AT) built around the Intel 80286 microprocessor. This chip was much faster, and could address up to 16MB of RAM but only in a mode which largely broke compatibility with the earlier 8086 and 8088. In particular, the MS-DOS operating system was not able to take advantage of this capability. A popular urban legend has Bill Gates of Microsoft stating "Why would anyone need more than 640KB?".

Eventually the PC would take over the role of the 8-bit home computers and become the dominant "Personal Computer" architecture, especially in the small business market. This did not happen overnight - for many years PC's and other home computers competed for the money and attention of the home user. For business use, though, the IBM PC and its clones quickly became the standard, only to be challenged by the Apple Macintosh.

The transition from a PC-compatible market being driven by IBM to one where it was driven primarily by a broader market began to become clear in 1986 and 1987; in 1986, the 32-bit Intel 80386 microprocessor was released, and the first '386-based PC/compatible was the Compaq Deskpro 386. IBM's response was nearly a year later, part of the general release of the IBM Personal System/2 series of computers, which were a closed architecture and a significant departure from the standard architecture of the PC, and in the long run it has been the standard architecture (as evolved significantly) which has persisted in the market.

The rise of GUI-based microcomputers

Graphical User Interface (KDE)

In 1983 Apple introduced its Lisa. The first mass-marketted microcomputer with a graphical user interface, its development was central in the move to such systems for personal computers. The Lisa ran on a Motorola 68000 microprocessor and came equipped with 1 megabyte of RAM, a 12-inch black-and-white monitor, dual 5¼-inch floppy disk drives and a 5 megabyte Profile hard drive. The Xerox Star – which included a programming language system called Smalltalk that involved the use of a mouse, windows, and pop-up menus – inspired the Lisa's designers. However, the Lisa's slow operating speed and high price (US$10,000) led to its ultimate failure.

Apple Computer also launched the Apple Macintosh, the first successful mouse-driven computer with a graphical user interface, with a single $1.5 million television commercial during the 1984 Super Bowl. Based on the Motorola 68000 microprocessor, the Macintosh included many of Lisa's features at a much more affordable price: $2,500.

Applications that came with the Macintosh included MacPaint, which made use of the mouse, and MacWrite, which demonstrated WYSIWYG word processing.

Microsoft Windows evolved out of the GUI concepts of the Macintosh, first as a shell on top of DOS to allow for GUI applications; IBM's OS/2 and Windows NT were developed as PC operating systems intended (among other uses) to run GUI applications from the ground up.

The microprocessor based server and networks

The invention in the late 1970s of local area networks (LANs), notably Ethernet, allowed PCs to communicate with each other (peer-to-peer) and with shared printers.

As the microcomputer revolution continued, more robust versions of the same technology were used to produce microprocessor based servers that could also be linked to the LAN. This was facilitated by the development of server operating systems to run on the Intel architecture, including several versions of both Unix and Microsoft Windows.

Networks of disks and networks of microprocessors

Server farm

With the development of storage area networks and server farms of thousands of servers, by the year 2000 the minicomputer had all but disappeared, and mainframes were largely restricted to specialised uses. The Google server farm is thought to be the largest, with a total calculation rate three times that of Earth Simulator or Blue Gene, as of September 29,2004.

See also

External links

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools